Fast and Accurate Probe Selection Algorithm for Large Genomes
نویسندگان
چکیده
The oligo microarray (DNA chip) technology in recent years has a significant impact on genomic study. Many fields such as gene discovery, drug discovery, toxicological research and disease diagnosis, will certainly benefit from its use. A microarray is an orderly arrangement of thousands of DNA fragments where each DNA fragment is a probe (or a fingerprint) of a gene/cDNA. It is important that each probe must uniquely associate with a particular gene/cDNA. Otherwise, the performance of the microarray will be affected. Existing algorithms usually select probes using the criteria of homogeneity, sensitivity, and specificity. Moreover, they improve efficiency employing some heuristics. Such approaches reduce the accuracy. Instead, we make use of some smart filtering techniques to avoid redundant computation while maintaining the accuracy. Based on the new algorithm, optimal short (20 bases) or long (50 or 70 bases) probes can be computed efficiently for large genomes.
منابع مشابه
Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملHaplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملAn Automatic Fingerprint Classification Algorithm
Manual fingerprint classification algorithms are very time consuming, and usually not accurate. Fast and accurate fingerprint classification is essential to each AFIS (Automatic Fingerprint Identification System). This paper investigates a fingerprint classification algorithm that reduces the complexity and costs associated with the fingerprint identification procedure. A new structural algorit...
متن کاملgpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences
Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. IEEE Computer Society Bioinformatics Conference
دوره 2 شماره
صفحات -
تاریخ انتشار 2003